659 research outputs found

    Using epigenomic studies in monozygotic twins to improve our understanding of cancer

    No full text
    Cancer is a set of diseases that exhibit not only genetic mutations but also a profoundly distorted epigenetic landscape. Over the last two decades, great advances have been made in identifying these alterations and their importance in the initiation and progression of cancer. Epigenetic changes can be seen from the very early stages in tumorigenesis and dysregulation of the epigenome has an increasingly acknowledged pathogenic role. Epigenomic twin studies have great potential to contribute to our understanding of complex diseases, such as cancer. This is because the use of monozygotic twins discordant for cancer enables epigenetic variation analysis without the confounding influence of the constitutive genetic background, age or cohort effects. It therefore allows the identification of susceptibility loci that may be sensitive to modification by the environment. These studies into cancer etiology will potentially lead to robust epigenetic markers for the detection and risk assessment of cance

    Novel genes for QTc interval. How much heritability is explained, and how much is left to find?

    Get PDF
    The corrected QT (QTc) interval is a complex quantitative trait, believed to be influenced by several genetic and environmental factors. It is a strong prognostic indicator of cardiovascular mortality in patients with and without cardiac disease. More than 700 mutations have been described in 12 genes (LQT1-LQT12) involved in congenital long QT syndrome. However, the heritability (genetic contribution) of QTc interval in the general population cannot be adequately explained by these long QT syndrome genes. In order to further investigate the genetic architecture underlying QTc interval in the general population, genome-wide association studies, in which up to one million single nucleotide polymorphisms are assayed in thousands of individuals, are now being employed and have already led to the discovery of variants in seven novel loci and five loci that are known to cause congenital long or short QT syndrome. Here we show that a combined risk score using 11 of these loci explains about 10% of the heritability of QTc. Additional discovery of both common and rare variants will yield further etiological insight and accelerate clinical applications

    Interaction between allelic variations in vitamin D receptor and retinoid X receptor genes on metabolic traits

    Get PDF
    BACKGROUND: Low vitamin D status has been shown to be a risk factor for several metabolic traits such as obesity, diabetes and cardiovascular disease. The biological actions of 1, 25-dihydroxyvitamin D, are mediated through the vitamin D receptor (VDR), which heterodimerizes with retinoid X receptor, gamma (RXRG). Hence, we examined the potential interactions between the tagging polymorphisms in the VDR (22 tag SNPs) and RXRG (23 tag SNPs) genes on metabolic outcomes such as body mass index, waist circumference, waist-hip ratio (WHR), high- and low-density lipoprotein (LDL) cholesterols, serum triglycerides, systolic and diastolic blood pressures and glycated haemoglobin in the 1958 British Birth Cohort (1958BC, up to n = 5,231). We used Multifactor- dimensionality reduction (MDR) program as a non-parametric test to examine for potential interactions between the VDR and RXRG gene polymorphisms in the 1958BC. We used the data from Northern Finland Birth Cohort 1966 (NFBC66, up to n = 5,316) and Twins UK (up to n = 3,943) to replicate our initial findings from 1958BC. RESULTS: After Bonferroni correction, the joint-likelihood ratio test suggested interactions on serum triglycerides (4 SNP - SNP pairs), LDL cholesterol (2 SNP - SNP pairs) and WHR (1 SNP - SNP pair) in the 1958BC. MDR permutation model testing analysis showed one two-way and one three-way interaction to be statistically significant on serum triglycerides in the 1958BC. In meta-analysis of results from two replication cohorts (NFBC66 and Twins UK, total n = 8,183), none of the interactions remained after correction for multiple testing (Pinteraction >0.17). CONCLUSIONS: Our results did not provide strong evidence for interactions between allelic variations in VDR and RXRG genes on metabolic outcomes; however, further replication studies on large samples are needed to confirm our findings

    Genetic interactions affecting human gene expression identified by variance association mapping

    Get PDF
    Non-additive interaction between genetic variants, or epistasis, is a possible explanation for the gap between heritability of complex traits and the variation explained by identified genetic loci. Interactions give rise to genotype dependent variance, and therefore the identification of variance quantitative trait loci can be an intermediate step to discover both epistasis and gene by environment effects (GxE). Using RNA-sequence data from lymphoblastoid cell lines (LCLs) from the TwinsUK cohort, we identify a candidate set of 508 variance associated SNPs. Exploiting the twin design we show that GxE plays a role in ∼70% of these associations. Further investigation of these loci reveals 57 epistatic interactions that replicated in a smaller dataset, explaining on average 4.3% of phenotypic variance. In 24 cases, more variance is explained by the interaction than their additive contributions. Using molecular phenotypes in this way may provide a route to uncovering genetic interactions underlying more complex traits.DOI: http://dx.doi.org/10.7554/eLife.01381.001

    The Inheritance of Peripapillary Atrophy

    Get PDF
    PURPOSE. To estimate the relative importance of genes and environment in peripapillary atrophy type beta (␤-PPA) in a classic twin study. METHODS. Female twin pairs (n ϭ 506) aged 49 to 79 years were recruited from the St. Thomas' UK Adult Twin Registry. Peripapillary atrophy was identified from masked grading of stereoscopic optic disc photographs. Structural equation modeling was performed using Mx with polychoric correlations of ␤-PPA and refractive error (divided into deciles). RESULTS. ␤-PPA prevalence was 25.1% and did not vary with zygosity. Case-wise concordance for right eyes was 0.76 (95% CI, 0.57-0.88) for monozygotic (MZ) and 0.37 (95% CI, 0.15-0.56) for dizygotic (DZ) pairs. Multivariate modeling suggested additive genetic effects and individual environment, with no shared environment or dominant genetic effect. ␤-PPA heritability was 0.70 (95% CI, 0.54 -0.83), and spherical equivalent 0.88 (95% CI, 0.85-0.91); age had no significant effect on variance. The genetic correlation between ␤-PPA and spherical equivalent was Ϫ0.21. However, only 3% of the genetic variance of ␤-PPA was explained by genetic factors in common with refractive error, with 67% explained by specific genetic factors for ␤-PPA. Of the 30% of variance explained by unique environmental factors, only 3% was explained by these factors in common with environmental factors involved in refractive error. CONCLUSIONS. The presence of ␤-PPA, a frequent ocular finding known to be associated with open-angle glaucoma, appears to be under strong genetic control, with only a small amount of this genetic effect shared with genes involved in myopia. (Invest Ophthalmol Vis Sci

    A Common Variant in the Telomerase RNA Component Is Associated with Short Telomere Length

    Get PDF
    Background: Telomeres shorten as cells divide. This shortening is compensated by the enzyme telomerase. We evaluated the effect of common variants in the telomerase RNA component (TERC) gene on telomere length (TL) in the populationbased Health Aging and Body Composition (Health ABC) Study and in two replication samples (the TwinsUK Study and the Amish Family Osteoporosis Study, AFOS). Methodology: Five variants were identified in the TERC region by sequence analysis and only one SNP was common (rs2293607, G/A). The frequency of the G allele was 0.26 and 0.07 in white and black, respectively. Testing for association between TL and rs2293607 was performed using linear regression models or variance component analysis conditioning on relatedness among subjects. Results: The adjusted mean TL was significantly shorter in 665 white carriers of the G allele compared to 887 non-carriers from the Health ABC Study (4.69±0.05 kbp vs. 4.86±0.04 kbp, measured by quantitative PCR, p = 0.005). This association was replicated in another white sample from the TwinsUK Study (6.90±0.03 kbp in 301 carriers compared to 7.06±0.03 kbp in 395 non-carriers, measured by Southern blots, p = 0.009). A similar pattern of association was observed in whites from the family-based AFOS and blacks from the Health ABC cohort, although not statistically significant, possibly due to the lower allele frequency in these populations. Combined analysis using 2,953 white subjects from 3 studies showed a significant association between TL and rs2293607 (β =-0.19±0.04 kbp, p = 0.001). Conclusion: Our study shows a significant association between a common variant in TERC and TL in humans, suggesting that TERC may play a role in telomere homeostasis. © 2010 Njajou et al
    corecore